

## **OXFORDSHIRE COUNTY COUNCIL**

# **Bicester Transport Modelling**

Peripheral Routes Assessment Technical Note Cherwell Local Plan Main Modifications to Growth for Bicester

WYG Executive Park Avalon Way Anstey Leicester LE7 7GR Final Report No. RT-084107-10 Revision 4

WYG Environment Planning Transport part of the wyg Group creative minds safe hands
www.wyg.com



# **REPORT CONTROL**

Document:

| Project:     | Bicester Transport Modelling                                                                                                                                                                       |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client:      | Oxfordshire County Council                                                                                                                                                                         |
| Job Number:  | A084107                                                                                                                                                                                            |
| File Origin: | N:\Projects\A084107 - Bicester Transport Modelling\reports\A084107-10<br>Local Plan Main Modification Peripheral Routes Tech Note\A084107-10<br>LocalPlanMainMods_PeripheralRoutesTechnote_R5.docx |

WYG Environment Planning Transport part of the wyg Group

creative minds safe hands



#### Document Checking:

| Primary Author | Rachael Walker | Initialled: | RW |
|----------------|----------------|-------------|----|
|                |                |             |    |
| Contributor    |                | Initialled: |    |
|                |                |             |    |

|  | Review By | Colin Shields | Initialled: | CRSD |  |
|--|-----------|---------------|-------------|------|--|
|--|-----------|---------------|-------------|------|--|

| Issue | Date     | Status                                      | Checked for Issue |
|-------|----------|---------------------------------------------|-------------------|
| 1     | 19.09.14 | Draft for Information                       | -                 |
| 2     | 23.09.14 | Draft                                       | CRS               |
| 3     | 24.09.14 | Draft incorporating additional OCC comments | CRS               |
| 4     | 08.10.14 | Final                                       | CRS               |
| 5     | 17.10.14 | Version for Submission                      | CRS               |

WYG Environment Planning Transport part of the wyg Group

. . . . . . . . . . .

www.wyg.com





# Contents

| 1 | Introduction                        | 1  |
|---|-------------------------------------|----|
| 2 | Revised Development Details         | 2  |
| 3 | Network and Matrix Development      | 3  |
| 4 | Forecast Growth Implications        | 6  |
| 5 | Model Comparisons                   | 8  |
| 6 | Economic Assessment                 | 14 |
| 7 | Assessments Including Upper Heyford | 18 |
| 8 | Conclusions                         | 24 |

# Tables

| Table 1: Final Housing and Employment Figures for the Main Modifications to the Local Plan       | 2   |
|--------------------------------------------------------------------------------------------------|-----|
| Table 2: AM Peak Model Network Summary Statistics                                                | 6   |
| Table 3: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over                      | 7   |
| Table 4: AM Peak Model Network Summary Statistics                                                | 8   |
| Table 5: PM Peak Model Network Summary Statistics                                                | 8   |
| Table 6: AM Peak Modelled Scenario Link Demand Flows (PCUs)                                      | .10 |
| Table 7: PM Peak Modelled Scenario Link Demand Flows (PCUs)                                      | .11 |
| Table 8: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over (AM Peak)            | .12 |
| Table 9: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over (PM Peak)            | .12 |
| Table 10: AM Peak Model Network Summary Statistics (With Upper Heyford)                          | .18 |
| Table 11: PM Peak Model Network Summary Statistics (With Upper Heyford)                          | .18 |
| Table 12: AM Peak Modelled Scenario Link Flows: With Upper Heyford Demand (PCUs)                 | .20 |
| Table 13: PM Peak Modelled Scenario Link Flows: With Upper Heyford Demand (PCUs)                 | .21 |
| Table 14: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over (AM Peak with Upper |     |
| Heyford)                                                                                         | 22  |
| Table 15: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over (PM Peak with Upper |     |
| Heyford)                                                                                         | 22  |

# Figures

Figure 1: Route 1b Saturn Network Plot

| WYG Environment Planning Transport part of the wyg Group | creative minds safe hands |
|----------------------------------------------------------|---------------------------|
| www.wyg.com                                              |                           |



### 1 Introduction

#### BACKGROUND

1.1 WYG were commissioned by Oxfordshire County Council to complete a quantitative assessment of the five options for peripheral route improvements at Bicester. The results were presented in the report: Bicester Peripheral Route Assessment Report (A084107-02 Rev3 Jan14). OCC have since commissioned WYG to provide information from the Bicester SATURN model to assess the impact of the increased growth proposals being considered for the Local Plan Main Modifications. The headline traffic impact and broad brush economic assessment of the development and link options is required to enable County Council officers to feedback to Cherwell District Council on whether there are any transport reasons why the growth should not happen at this speed and, if it is to happen, what would be the highway network impacts of this level of growth, what improvements will be required to the peripheral routes to keep these functioning in the intended way, and would this level of growth trigger the need for a new link road. Initial results were included in the report: Cherwell Local Plan Revised Growth for Bicester Peripheral Routes Assessment Technical Note (A084107-07 rev2 Aug14). This report updates the assessment using the final numbers for the Main Modifications to the Local Plan.





### 2 Revised Development Details

- 2.1 Cherwell District Council submitted its Local Plan in January this year which included 16,750 new homes. The Local Plan Examination was suspended as the Inspector ruled that the Plan should have taken into account Cherwell's unmet need as identified through the Strategic Market Housing Assessment, which should allow for 22,800 new homes. The District Council therefore needs to assess how to deliver the additional 6,000 homes within the District, including the transport impact of this growth within Modifications to the Local Plan. These results are required to be presented to the Inspector in order to meet the deadlines for consultation and approvals prior to the Examination re-opening in December 2014.
- 2.2 Bicester is likely to take an additional 2,000 homes by increasing the rate of delivery at North West Bicester, small increases in the development at South West Bicester and tripling the size of housing growth at South East Bicester. In addition there are proposals for increased employment growth.
- 2.3 Due to the nature and location of the Upper Heyford development, assessment is being carried out using the Central Oxfordshire Transport Model in order to fully assess its impact over the wider area. As such, it will be included in this report as part of the sensitivity testing only.
- 2.4 Details of the housing and employment sites to be tested are included in **Table 1** below:

| Plan Period Total Supply 2011 -   | Housing   | Employment                               |                  |  |
|-----------------------------------|-----------|------------------------------------------|------------------|--|
| 2031                              | Dwellings | Hectares<br>(unless otherwise<br>stated) | Jobs<br>Estimate |  |
| NW Bicester (Bicester 1)          | 3293      | 10                                       | 3000             |  |
| Graven Hill (Bicester 2)          | 2100      | 26                                       | 2000             |  |
| SW Bicester Phase 1 (Bicester 3)  | 1742      | -                                        | -                |  |
| SW Bicester Phase 2 (Bicester 3)  | 726       | -                                        | -                |  |
| Bic Business Park (Bicester 4)    | -         | 29.5                                     | 6000             |  |
| Bicester Gateway (Bicester 10)    | -         | 18                                       | 3500             |  |
| Land at NE Bicester (Bicester 11) | -         | 15                                       | 1000             |  |
| SE Bicester (Bicester 12)         | 1500      | 40                                       | 3000             |  |
| Gavray Drive (Bicester 13)        | 300       | -                                        | -                |  |
| Talisman Road (approved site)     | 125       | -                                        | -                |  |
| Upper Heyford                     | 2361      | 120,000 sqm                              | 1500             |  |

# Table 1: Final Housing and Employment Figures for the Main Modifications to the Local Plan



### 3 Network and Matrix Development

- 3.1 Saturn networks and matrices were updated from the existing 2012 Bicester Saturn model in order to provide traffic forecasts for the North West Bicester Eco Development. Further model runs were required by the Highways Agency in order to provide traffic forecasts for the M40 Junction 9 in a number of forecast scenarios. Details of this work are included in the report: Bicester M40J9 Scenarios Technical Note (A084107-05 May14).
- 3.2 The matrices produced for the NW Bicester development were updated to include the revised development assumptions detailed in **Table 1**. These matrices did not include the figures outlined for Upper Heyford. However, additional matrices including the Upper Heyford development were constructed to allow a sensitivity test of the route options to be assessed to be carried out.
- 3.3 The matrices were assigned to the networks produced for the NW Bicester assessments with the amendment of the addition of zone connectors for the Upper Heyford Development. The infrastructure changes included to update the network from the 2012 base are given below:
  - i. Vendee Drive (the south west link road);
  - ii. M40 Junction 9 phase 1;
  - iii. Town centre access improvements;
  - iv. Changes implemented as part of the town centre redevelopment;
  - v. Traffic calming and 30mph speed limit on Middleton Stoney Road;
  - vi. Changes at the Pingle Drive junction, A41 / Oxford Road (ESSO) junction and along the A41 corridor (as part of the mitigation measures from Tesco's move and Bicester Village phase 4);
  - vii. Park & ride entrance / exit at the junction of Vendee Drive and the A41;
  - viii. A4095 / B4100 junction alterations( as part of NW Bicester exemplar site);
  - ix. Alterations to the A41 / London Road (Rodney House) junction( as part of Graven Hill mitigation);



- x. M40 Junction 9 phase 2.
- Development access and infrastructure associated with North West Bicester (BICESTER 1), Graven Hill (BICESTER 2), South West Bicester phase 2 (BICESTER 3), Bicester Business Park (BICESTER 4), Town centre redevelopment phase 2 (BICESTER 6), RAF Bicester (BICESTER 8), Bicester Gateway (BICESTER 10), North East Bicester Business Park (BICESTER 11) including the care home and business park adjacent to this site with existing planning permission and South East Bicester (BICESTER 12);
- xii. London Road crossing closed permanently to through traffic<sup>1</sup>;
- xiii. Charbridge Lane level crossing replaced by an overbridge;
- xiv. Inclusion of the M40 Junction 10 pinch point scheme; and
- xv. Results from an Arcady junction assessment for the A4095/ B4100 Banbury Road roundabout junction were input into the SATURN network in order to accurately reflect traffic conditions at the junction.
- 3.4 Minor amendments were also made in the networks to the traffic signal timings at M40 junction 9 and M40 Junction 10 in reaction to the revised traffic flows through these junctions. Matrices and networks were produced for the AM and PM peak periods. Assignments were carried out using the above matrices to provide the reference case options for comparing the peripheral routes scenarios.
- 3.5 The networks were updated to include the three route options to be tested: Route 1b, Route 2c and Route 3 as detailed in the Bicester Peripheral Route Assessment Report.
- 3.6 Where the NW Bicester development has been included in more detail since the initial peripheral routes assessments, Route 1b would now cross the development. This would not be a desirable route. As such, based on discussion with OCC, the southern tie in of Route 1b has been realigned to the west of the NW Bicester development on the B4030 rather than connecting into the A4095 Howes Lane/Middleton Stoney Road Roundabout. A network plot showing the realigned route is given in **Figure 1**.

<sup>&</sup>lt;sup>1</sup> The worst case scenario has therefore been modelled i.e. full closure of the crossing.





#### 3.7 The modelled scenarios (for each peak period) are therefore:

Main Scenarios:

- 1. 2031 Final Main Modification Local Plan Growth;
- 2. 2031 Final Main Modification Local Plan Growth with Route 1b;
- 3. 2031 Final Main Modification Local Plan Growth with Route 2c;
- 4. 2031 Final Main Modification Local Plan Growth with Route 3;

Additional Sensitivity Testing Scenarios (See Section 7):

- 5. 2031 Final Main Modification Local Plan Growth including Upper Heyford;
- 2031 Final Main Modification Local Plan Growth with Route 1b including Upper Heyford;
- 2031 Final Main Modification Local Plan Growth with Route 2c including Upper Heyford; and
- 2031 Final Main Modification Local Plan Growth with Route 3 including Upper Heyford.



### 4 Forecast Growth Implications

- 4.1 As discussed above, the local plan growth represents a significant increase in housing and employment in the Bicester area. As such, it is recognised that this will have a corresponding increase in person trips once the developments are in place.
- 4.2 **Table 2** below gives the modelled Saturn network summary statistics for the AM and PM peak hours for the 2012 base model and Scenario 1: 2031 Final Main Modification Local Plan Growth.

| Peak Hour:                      | ľ       | M                                     | РМ      |                                   |  |
|---------------------------------|---------|---------------------------------------|---------|-----------------------------------|--|
| Option:                         | 2012    | Scenario 1<br>)12 No New<br>Link Road |         | Scenario 1<br>No New<br>Link Road |  |
| Trip Matrix Total (PCU)         | 24930   | 32817                                 | 26150   | 36136                             |  |
| Total Travel Time (PCU Hrs)     | 3,085   | 3,939                                 | 3,164   | 4,761                             |  |
| Total Travel Distance (PCU Kms) | 237,565 | 268,447                               | 243,630 | 294,787                           |  |
| Average Speed (Kph)             | 77.0    | 68.1                                  | 77.0    | 61.9                              |  |
| Over Capacity Queues PCU (Hrs)  | 220     | 369                                   | 186     | 688                               |  |

#### **Table 2: AM Peak Model Network Summary Statistics**

- 4.3 As can be clearly seen from **Table 2**, there are significant increases in number of trips in Scenario 1. This leads to an increase in total travel time, total travel distance and over capacity queues and a decrease in average speed.
- 4.3.1 Comparisons have been made for the demand flow differences between the 2012 base model and Scenario 1 for each peak. These comparisons show a general increase in traffic across the modelled area with Scenario 1. Some decreases in traffic are also seen are due to rerouting of vehicles in response to changes in the network such as starvation of vehicles to downstream



junctions where congestion has increased or changes in the road network e.g. the closure of the London Road level crossing.

4.4 The number of links and turns at junctions with Volume over Capacity (V/C) ratios of 85% or over and 100% or over are summarised in the **Table 3** below for 2012 and Scenario 1.

| Option |                                | 85%  |       | 100% |       |
|--------|--------------------------------|------|-------|------|-------|
|        |                                | Link | Turns | Link | Turns |
|        | 2012                           | 15   | 20    | 7    | 13    |
| AM     | Scenario 1<br>No New Link Road | 48   | 83    | 18   | 43    |
|        | 2012                           | 19   | 22    | 9    | 15    |
| PM     | Scenario 1<br>No New Link Road | 72   | 125   | 37   | 84    |

Table 3: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over

4.5 As would be expected, the increased number of PCU trips in the network leads to an increase in the number of links and turns that become congested in Scenario 1.

4.6 The inclusion of the North West Bicester development leads to no junction or links flagged as over 85% (and hence 100%) on the western corridor in Scenario 1. The exception to this is the junction of A4095 Lords Lane/B4100 Banbury Road. This junction is being investigated separately as part of the North West Bicester Transport Assessment and, as such, no improvements to this junction have currently been included in the models.

4.7 The over capacity links and turns at junctions within the Bicester area itself are therefore on the southern, northern and eastern corridors around the town. It would not be prudent to try to enhance central areas of Bicester town in order to improve congestion conditions for vehicular traffic as this would likely lead to an additional increase in traffic through areas where a decrease in traffic is considered more desirable. Therefore, further study into possible improvements to the southern, northern and eastern corridors such as Boundary Way can be considered advisable.



# 5 Model Comparisons

5.1 This section details the results of the comparisons between the potential peripheral route link options being assessed. **Tables 4 and 5** give the summary network statistics for each option by peak period.

| Option:                         | 2012    | Scenario 1<br>No New<br>Link Road | Scenario 2<br>R1b | Scenario 3<br>R2c | Scenario 4<br>R3 |
|---------------------------------|---------|-----------------------------------|-------------------|-------------------|------------------|
| Total Travel Time (PCU Hrs)     | 3,085   | 3,939                             | 3,891             | 3,800             | 3,726            |
| Total Travel Distance (PCU Kms) | 237,565 | 268,447                           | 268,661           | 266,905           | 267,033          |
| Average Speed (Kph)             | 77.0    | 68.1                              | 69.0              | 70.2              | 71.7             |
| Over Capacity Queues PCU (Hrs)  | 220     | 369                               | 334               | 267               | 204              |

#### Table 4: AM Peak Model Network Summary Statistics

#### Table 5: PM Peak Model Network Summary Statistics

| Option:                         | 2012    | Scenario 1<br>No New<br>Link Road | Scenario 2<br>R1b | Scenario 3<br>R2c | Scenario 4<br>R3 |
|---------------------------------|---------|-----------------------------------|-------------------|-------------------|------------------|
| Total Travel Time (PCU Hrs)     | 3,164   | 4,761                             | 4,693             | 4,725             | 4,461            |
| Total Travel Distance (PCU Kms) | 243,630 | 294,787                           | 295,168           | 293,150           | 293,732          |
| Average Speed (Kph)             | 77.0    | 61.9                              | 62.9              | 62.0              | 65.8             |
| Over Capacity Queues PCU (Hrs)  | 186     | 688                               | 629               | 696               | 440              |

WYG Environment Planning Transport part of the wyg Group

. . . .



- 5.2 As can be seen from **Tables 4 and 5** above, the main modification to the local plan growth with no route option is generally the worst performing option in terms of both over capacity queuing, average speed and travel time. As discussed in the previous section, this is a significant increase over the 2012 levels.
- 5.3 Of the Peripheral Route options, Route 3 for both peaks performs best in these same three areas.
- 5.4 Route 2c has the lowest total travel distance of the peripheral routes options.
- 5.5 **Tables 6 and 7** give link flows in PCUs on key links across the network for each of the main scenarios:

. . . . . . . . . .





| Link                            | Scenario: | Scenario 1 | Scenario | Scenario | Scenario  |
|---------------------------------|-----------|------------|----------|----------|-----------|
|                                 |           | No New     | 2        | 3        | 4         |
| A 41 Detween M40 and            |           |            | R1D      | R2C      | <b>R3</b> |
| A41 Between M40 and             | NEB       | 2056       | 2084     | 2489     | 2577      |
|                                 | SWB       | 890        | 867      | 962      | 1180      |
| Vendee Drive                    | NWB       | 245        | 202      | 282      | 270       |
|                                 | SEB       | 202        | 202      | 294      | 256       |
| Middleton Stoney Road (East of  | EB        | 641        | 568      | 512      | 382       |
| Vendee Drive)                   | WB        | 491        | 472      | 478      | 502       |
| NW Bicester Development Link    | NEB       | 418        | 382      | 264      | 242       |
| Road                            | SWB       | 454        | 384      | 421      | 400       |
| A4095 (West of Banbury Road)    | EB        | 637        | 570      | 489      | 427       |
|                                 | WB        | 412        | 406      | 388      | 361       |
| A4095 (West of A4421)           | EB        | 969        | 826      | 903      | 886       |
|                                 | WB        | 814        | 469      | 742      | 669       |
| A4421 Skimmingdish Lane         | SEB       | 1598       | 1577     | 1572     | 1569      |
|                                 | WB        | 622        | 614      | 560      | 531       |
| A4421 Wretchwick Way            | NEB       | 541        | 503      | 621      | 585       |
|                                 | SWB       | 499        | 469      | 507      | 507       |
| A41 (East of Oxford Road)       | EB        | 2089       | 2059     | 1514     | 1358      |
|                                 | WB        | 1948       | 1926     | 1142     | 1321      |
| Kings End                       | NB        | 1012       | 963      | 1305     | 1410      |
|                                 | SB        | 1072       | 1081     | 1063     | 1052      |
| Field Street                    | NB        | 1300       | 1239     | 1368     | 1357      |
|                                 | SB        | 1000       | 985      | 966      | 961       |
| Banbury Road (North of Field    | NB        | 340        | 349      | 337      | 336       |
| Street)                         | SB        | 314        | 323      | 328      | 305       |
| Buckingham Road (North of       | NB        | 964        | 893      | 1035     | 1027      |
| Field Street)                   | SB        | 690        | 666      | 642      | 662       |
| Route 1b North West Link        | NEB       | NA         | 296      | NA       | NA        |
| (South of Bucknell Rd)          | SWB       | NA         | 237      | NA       | NA        |
| Route 2c (South of Graven Hill) | EB        | NA         | NA       | 670      | NA        |
|                                 | WB        | NA         | NA       | 732      | NA        |
| Route 3 (South of Graven Hill)  | EB        | NA         | NA       | NA       | 1043      |
|                                 | WB        | NA         | NA       | NA       | 768       |

#### Table 6: AM Peak Modelled Scenario Link Demand Flows (PCUs)

WYG Environment Planning Transport part of the wyg Group

creative minds safe hands





| Link                            | Scenario: | Scenario 1<br>No New | Scenario<br>2 | Scenario<br>3 | Scenario<br>4 |
|---------------------------------|-----------|----------------------|---------------|---------------|---------------|
|                                 |           | Link Road            | R1b           | R2c           | R3            |
| A41 Between M40 and             | NEB       | 1288                 | 1263          | 1574          | 1590          |
| Wendlebury Road                 | SWB       | 2170                 | 2152          | 2358          | 2307          |
| Vendee Drive                    | NWB       | 569                  | 588           | 780           | 786           |
|                                 | SEB       | 428                  | 435           | 961           | 672           |
| Middleton Stoney Road (East of  | EB        | 1106                 | 1037          | 1025          | 1007          |
| Vendee Drive)                   | WB        | 546                  | 517           | 574           | 514           |
| NW Bicester Development Link    | NEB       | 657                  | 531           | 425           | 409           |
| Road                            | SWB       | 362                  | 338           | 384           | 312           |
| A4095 (West of Banbury Road)    | EB        | 621                  | 414           | 400           | 397           |
|                                 | WB        | 438                  | 481           | 382           | 340           |
| A4095 (West of A4421)           | EB        | 445                  | 175           | 333           | 334           |
|                                 | WB        | 1511                 | 1558          | 1415          | 1397          |
| A4421 Skimmingdish Lane         | SEB       | 996                  | 984           | 842           | 829           |
|                                 | WB        | 1635                 | 1633          | 1501          | 1501          |
| A4421 Wretchwick Way            | NEB       | 723                  | 670           | 670           | 639           |
|                                 | SWB       | 458                  | 474           | 595           | 585           |
| A41 (East of Oxford Road)       | EB        | 2127                 | 2078          | 1122          | 1242          |
|                                 | WB        | 1973                 | 1938          | 1176          | 1091          |
| Kings End                       | NB        | 1131                 | 1040          | 1527          | 1470          |
|                                 | SB        | 1132                 | 1109          | 1061          | 1069          |
| Field Street                    | NB        | 1369                 | 1333          | 1396          | 1372          |
|                                 | SB        | 1259                 | 1163          | 946           | 1034          |
| Banbury Road (North of Field    | NB        | 653                  | 606           | 657           | 652           |
| Street)                         | SB        | 449                  | 495           | 450           | 463           |
| Buckingham Road (North of       | NB        | 943                  | 902           | 941           | 922           |
| Field Street)                   | SB        | 1037                 | 844           | 699           | 773           |
| Route 1b North West Link        | NEB       | NA                   | 341           | NA            | NA            |
| (South of Bucknell Rd)          | SWB       | NA                   | 198           | NA            | NA            |
| Route 2c (South of Graven Hill) | EB        | NA                   | NA            | 1023          | NA            |
|                                 | WB        | NA                   | NA            | 685           | NA            |
| Route 3 (South of Graven Hill)  | EB        | NA                   | NA            | NA            | 959           |
|                                 | WB        | NA                   | NA            | NA            | 874           |

#### Table 7: PM Peak Modelled Scenario Link Demand Flows (PCUs)

WYG Environment Planning Transport part of the wyg Group



- 5.6 The demand flow differences between scenarios for each peripheral route option have been studied. In all cases, these show a general decrease in traffic within the Bicester urban area doe to rerouting of traffic onto the peripheral route included.
- 5.7 Routes 2c and 3 give significant reductions on the A41 (East of Oxford Road). Routes 2c and 3 give the largest increases on Kings End northbound, although the southbound flows on this link remains largely static in all options.
- 5.8 Field Street remains largely unchanged in all options. This is likely due to the vehicles using this link having a trip end near to the link thus limiting the routing alternatives.
- 5.9 The number of links and turns at junctions with Volume over Capacity (V/C) ratios of 85% or over and 100% or over are given in **Tables 8 and 9** below for each scenario. A green shaded cell indicates the best performing option:

| Ontion                         | 8    | 5%    | 10   | 00%   |
|--------------------------------|------|-------|------|-------|
| Option                         | Link | Turns | Link | Turns |
| 2012                           | 15   | 20    | 7    | 13    |
| Scenario 1<br>No New Link Road | 48   | 83    | 18   | 43    |
| Scenario 2 R1b                 | 47   | 78    | 19   | 45    |
| Scenario 3 R2c                 | 47   | 82    | 18   | 45    |
| Scenario 4 R3                  | 42   | 72    | 17   | 37    |

Table 8: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over (AM Peak)

Table 9: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over (PM Peak)

| Ontion                         | 8    | 5%    | 100% |       |  |
|--------------------------------|------|-------|------|-------|--|
| Option                         | Link | Turns | Link | Turns |  |
| 2012                           | 19   | 22    | 9    | 15    |  |
| Scenario 1<br>No New Link Road | 72   | 125   | 37   | 84    |  |
| Scenario 2 R1b                 | 62   | 113   | 32   | 75    |  |
| Scenario 3 R2c                 | 62   | 117   | 32   | 75    |  |
| Scenario 4 R3                  | 63   | 110   | 33   | 77    |  |

WYG Environment Planning Transport part of the wyg Group

creative minds safe hands



- 5.10 As can be seen from **Tables 8 and 9**, Route 3 performs the best in the AM peak across all scenarios having the least amount of links and junctions over 85% & 100% V/C for all scenarios. For the PM peak Routes 1b and 2c perform better although the increase between routes 1b/2c and 3 is small.
- 5.11 The above tables illustrate that, although the peripheral route options help to mitigate some of the congestion caused by the increase in growth, they do not solve all of the problems. Therefore, it is considered advisable that additional assessment is made of mitigation measures that could be feasible in order to further reduce the predicted levels of congestion.

. . . . .



### 6 Economic Assessment

6.1 The Transport User Benefit Appraisal program, TUBA, (version 1.9.2) has been used to estimate the benefits derived from a scheme in terms of time and vehicle operating cost savings. TUBA assesses the whole life costs and benefits of transport schemes using matrices of costs, in terms of distance and time, and trips from the transport model. The program calculates user benefits and changes in revenues and produces indicators of a project worth.

#### **TUBA Inputs**

- 6.2 There are three main inputs to the TUBA process:
  - Economic parameters
  - Scheme specific control data
  - Matrix data from the traffic model

#### **Economic Parameters**

6.3 In accordance with WebTAG guidance, the standard TUBA economics file has been used. This file provides details of tax rates, Values Of Time (VOT) and Vehicle Operating Cost (VOC) parameters and growth forecasts for VOT and VOC.

#### **Scheme Specific Control Data**

- 6.4 The control data file used by TUBA is scheme specific and defines the appraisal period, sets out the scheme costs, provides details of model specific data (e.g. time slices and user classes) and defines the annualisation factors (i.e. to convert model time periods to their annual equivalent).
- 6.5 For the purposes of the TUBA assessment the current year has been taken as 2014 and, with an opening year of 2017, the horizon year is 2076, thus providing a 60 year assessment period in accordance with WebTAG guidance (TAG Unit 3.5.2). A second year of 2031 is also defined within TUBA for assessment. However, as only one modelled 'year' scenario is available from the SATURN model but TUBA requires a minimum of two modelled years, the same model outputs have been used for both of the scheme appraisal years (2017 and 2031) input to TUBA. This means there is an assumption that all growth and infrastructure occurs, and is complete, by the first assessment year of 2017 and stays the same until 2031. This means that





the economic assessment could be potentially over or underestimating the benefits of any scheme dependant on when the infrastructure or the development growth would actually occur. Were the scheme completed before some of the proposed developments, it could likely operate within capacity more easily and hence provide additional benefits to the network. However, few trips in the network without the development could mean lower levels of benefits as there would be fewer trips in the network to benefit from the presence of the scheme. As such, it must be reiterated that these assessments are for comparative assessments between the route options only.

- 6.6 The time periods from the transport model were:
  - i) 0800 0900 (AM peak); and
  - ii) 1700 1800 (PM peak).
- 6.7 A simplistic approach for the calculation of annualisation factors has been taken where the factors are assumed to be the number of weekdays in a year (253) for each peak period.
- 6.8 The total annual hours assessed therefore are 506 (out of an annual total of 8760 hours). This is considered to be a robust assessment as no benefits from the peak shoulders, interpeak, off peak or weekend periods are being claimed. It is recommended that further assessment of the hours to be assessed should be made in order to refine these factors post the model revalidation work based on survey data.
- 6.9 The following vehicle mode types have been used in the TUBA assessment:
  - Cars
  - Light Goods Vehicles (LGV)
  - Medium Goods Vehicles (OGV1); and
  - Heavy Goods (OGV2)
- 6.10 Although only 2 vehicle classes were available from the model ('Lights' and 'Heavies'), it was deemed appropriate to split the model outputs into the four classes for assessment with TUBA. As such the 'Lights' vehicle class is assumed to consist of 90% car and 10% light goods vehicles and the 'Heavies' vehicle class is assumed to consist of 60% OGV1 and 40% OGV2. The percentage splits have been based on classified counts collected as part of the model revalidation work. This allows TUBA to take account of different vehicle type impacts in the



assessment. Separate vehicle matrices for each class or factors derived from count information as a minimum should be used for the post model revalidation economic assessments.

- 6.11 All scheme costs have been entered as Factor Costs to allow TUBA to convert to Market Prices.
- 6.12 All scheme costs have been assumed to occur in 2016.
- 6.13 The Retail Price Index (RPI) value of 246.8 has been used in all assessments. This is equivalent to the December 2012 figure which was the latest available at the time of carrying out the assessments.
- 6.14 All costs have been assumed to be attributable to TUBA Mode 1 (i.e. Private Mode).
- 6.15 Costs for construction were not available for input to the TUBA assessments. Therefore, a generic figure of £1,000 has been assumed for all options as a proxy for real values. As such, the resultant Present Value Costs (PVC) from the TUBA assessment should not be used. Furthermore, as the Benefit Cost Ratio (BCR) uses the PVC in its calculation, the BCR should also be disregarded in the assessment. Only the Present Value Benefits should be used for analysis of the results and as only one modelled year is available for input to the TUBA, the PVB should only be used to provide a ranking of the options compared to the reference case.

#### Matrix Data from the Transport Model

- 6.16 Forecast flows from the Bicester route scenario models, as detailed in the previous sections have been used in the economic assessments.
- 6.17 Trip Matrices have been skimmed from the SATURN assignments for each vehicle type ('Lights' and 'Heavies') for the revised Main Modifications to the Local Plan growth matrices.
- 6.18 Each model has then been skimmed to produce time and distance matrices by origin destination pair. In accordance with TUBA guidance, a factor of 0.00028 has been used to convert the time matrices from seconds to hours and a factor of 0.001 has been used to convert the distance matrices from metres to kilometres.
- 6.19 The following TUBA assessments have been carried out with the no peripheral route scenario (Main Modifications = MM) being taken as the reference case for all assessments:
  - MM versus MM +R1b



- MM versus MM +R2c
- MM versus MM +R3
- 6.20 Checks have been carried out to ensure the correct matrices have been input into the TUBA assessment process.

#### **TUBA Results**

- 6.21 Again, it should be noted that the Benefit Cost Ratio cannot be used directly as no costs for construction have been supplied. Furthermore, as only one modelled year is available, the Present Value Benefits (PVB) can only be used as an indicator as to whether the scheme to be tested is an improvement over the reference case and *the absolute value should not be used*.
- 6.22 Final Main Modification additional growth versus Route 1b: Route 1b shows a positive PVB and can be considered an improvement in terms of travel time for vehicular journeys when compared to no peripheral route.
- 6.23 Final Main Modification additional growth versus Route 2c: Route 2c shows a positive PVB and can be considered an improvement in terms of travel time for vehicular journeys when compared to no peripheral route. The quantity of the PVB indicates more of a positive benefit than that shown by Route 1b versus no peripheral route.
- 6.24 Final Main Modification additional growth versus Route 3: Route 3 shows a positive PVB and can be considered an improvement in terms of travel time for vehicular journeys when compared to no peripheral route. The quantity of the PVB indicates more of a positive benefit than that shown by Route 1b or Route 2c versus no peripheral route.

#### **Order of Ranking**

- 6.25 In summary, the routes increase in benefit compared to no peripheral route in the following order:
  - Route 1b Least benefit
    Route 2c
    Route 3 Most benefit
- 6.26 This is consistent with the conclusions of the previous peripheral route assessments.



### 7 Assessments Including Upper Heyford

7.1 **Tables 10 and 11** summarise statistics for the Main Modification to the Local Plan scenarios but include the Upper Heyford Development. As stated previously, Upper Heyford is being assessed in more detail using the Central Oxfordshire Transport Model in order to fully assess its impact over the wider area. These assessments are to confirm that the inclusion of Upper Heyford does not materially affect the assessment of the peripheral routes as detailed in the previous sections. The assessments have been carried out without inclusion of any associated Upper Heyford mitigation and hence can be considered a worst case scenario.

| Option:                         | 2012    | Scenario 5<br>No New<br>Link Road | Scenario 6<br>R1b | Scenario 7<br>R2c | Scenario 8<br>R3 |
|---------------------------------|---------|-----------------------------------|-------------------|-------------------|------------------|
| Total Travel Time (PCU Hrs)     | 3,085   | 5,427                             | 5,269             | 5,104             | 5,094            |
| Total Travel Distance (PCU Kms) | 237,565 | 311,816                           | 311,815           | 310,813           | 310,813          |
| Average Speed (Kph)             | 77.0    | 57.5                              | 59.2              | 59.7              | 61.0             |
| Over Capacity Queues PCU (Hrs)  | 220     | 998                               | 879               | 830               | 735              |

#### Table 10: AM Peak Model Network Summary Statistics (With Upper Heyford)

#### Table 11: PM Peak Model Network Summary Statistics (With Upper Heyford)

| Option:                         | 2012    | Scenario 5<br>No New<br>Link Road | Scenario 6<br>R1b | Scenario 7<br>R2c | Scenario 8<br>R3 |
|---------------------------------|---------|-----------------------------------|-------------------|-------------------|------------------|
| Total Travel Time (PCU Hrs)     | 3,164   | 5,625                             | 5,589             | 5,590             | 5,288            |
| Total Travel Distance (PCU Kms) | 243,630 | 318,085                           | 318,554           | 316,115           | 316,698          |
| Average Speed (Kph)             | 77.0    | 56.5                              | 57.0              | 56.5              | 59.9             |
| Over Capacity Queues PCU (Hrs)  | 186     | 1096                              | 1085              | 1109              | 816              |

WYG Environment Planning Transport part of the wyg Group

. . . . .



- 7.2 Of the Peripheral Route options, Route 3 again performs best for total travel time, average speed and over capacity queues with Upper Heyford included.
- 7.3 Again, Route 2c has the lowest total travel distance for all but the AM with Upper Heyford scenario where Route 2c and 3 both have the lowest.
- 7.4 **Tables 12 and 13** summarise the link flows in PCUs on key links across the networks for each of the main scenarios including the proposed Upper Heyford development.

. . . . .





#### Table 12: AM Peak Modelled Scenario Link Flows: With Upper Heyford Demand (PCUs)

| Link                            | Scenario: | Scenario 5 | Scenario<br>6 | Scenario<br>7 | Scenario<br>8 |
|---------------------------------|-----------|------------|---------------|---------------|---------------|
|                                 |           | Link Road  | R1b           | R2c           | R3            |
| A41 Between M40 and             | NEB       | 2111       | 2109          | 2525          | 2855          |
| Wendlebury Road                 | SWB       | 1260       | 1181          | 1436          | 1649          |
| Vendee Drive                    | NWB       | 284        | 289           | 371           | 389           |
|                                 | SEB       | 189        | 186           | 321           | 315           |
| Middleton Stoney Road (East of  | EB        | 1030       | 914           | 774           | 581           |
| Vendee Drive)                   | WB        | 802        | 756           | 719           | 732           |
| NW Bicester Development Link    | NEB       | 557        | 528           | 365           | 327           |
| Road                            | SWB       | 554        | 509           | 479           | 467           |
| A4095 (West of Banbury Road)    | EB        | 878        | 748           | 809           | 747           |
|                                 | WB        | 386        | 463           | 337           | 271           |
| A4095 (West of A4421)           | EB        | 1360       | 996           | 1135          | 1046          |
|                                 | WB        | 1096       | 757           | 948           | 889           |
| A4421 Skimmingdish Lane         | SEB       | 1796       | 1806          | 1731          | 1659          |
|                                 | WB        | 757        | 705           | 541           | 540           |
| A4421 Wretchwick Way            | NEB       | 509        | 511           | 601           | 528           |
|                                 | SWB       | 539        | 465           | 413           | 431           |
| A41 (East of Oxford Road)       | EB        | 2395       | 2302          | 1742          | 1584          |
|                                 | WB        | 2274       | 2135          | 1409          | 1403          |
| Kings End                       | NB        | 994        | 949           | 1284          | 1420          |
|                                 | SB        | 1174       | 1157          | 1137          | 1154          |
| Field Street                    | NB        | 1430       | 1301          | 1463          | 1433          |
|                                 | SB        | 1357       | 1332          | 1361          | 1256          |
| Banbury Road (North of Field    | NB        | 381        | 394           | 358           | 379           |
| Street)                         | SB        | 588        | 568           | 611           | 514           |
| Buckingham Road (North of Field | NB        | 1028       | 885           | 1043          | 1072          |
| Street)                         | SB        | 748        | 742           | 688           | 759           |
| Route 1b North West Link (South | NEB       | NA         | 235           | NA            | NA            |
| of Bucknell Rd)                 | SWB       | NA         | 168           | NA            | NA            |
| Route 2c (South of Graven Hill) | EB        | NA         | NA            | 980           | NA            |
|                                 | WB        | NA         | NA            | 917           | NA            |
| Route 3 (South of Graven Hill)  | EB        | NA         | NA            | NA            | 1385          |
|                                 | WB        | NA         | NA            | NA            | 1083          |

WYG Environment Planning Transport part of the wyg Group

creative minds safe hands





| Link                            | Scenario: | Scenario 5 | Scenario | Scenario | Scenario |
|---------------------------------|-----------|------------|----------|----------|----------|
|                                 |           | No New     | 6<br>R1h | 7<br>R2c | 8<br>83  |
| A41 Between M40 and             | NEB       | 1359       | 1429     | 1603     | 1612     |
| Wendlebury Road                 | SWB       | 2597       | 2883     | 2845     | 2531     |
| Vendee Drive                    | NWB       | 617        | 494      | 762      | 791      |
|                                 | SEB       | 385        | 426      | 1237     | 699      |
| Middleton Stoney Road (East of  | EB        | 1151       | 1064     | 987      | 968      |
| Vendee Drive)                   | WB        | 853        | 830      | 889      | 726      |
| NW Bicester Development Link    | NEB       | 592        | 471      | 388      | 382      |
| Road                            | SWB       | 457        | 419      | 623      | 346      |
| A4095 (West of Banbury Road)    | EB        | 635        | 380      | 513      | 481      |
|                                 | WB        | 438        | 552      | 500      | 288      |
| A4095 (West of A4421)           | EB        | 440        | 166      | 311      | 292      |
|                                 | WB        | 1584       | 1753     | 1491     | 1451     |
| A4421 Skimmingdish Lane         | SEB       | 971        | 1025     | 829      | 825      |
|                                 | WB        | 1980       | 1940     | 1752     | 1748     |
| A4421 Wretchwick Way            | NEB       | 798        | 746      | 722      | 631      |
|                                 | SWB       | 364        | 357      | 526      | 571      |
| A41 (East of Oxford Road)       | EB        | 2131       | 2039     | 1074     | 1244     |
|                                 | WB        | 2385       | 2278     | 1497     | 1516     |
| Kings End                       | NB        | 1093       | 1058     | 1506     | 1435     |
|                                 | SB        | 1279       | 1250     | 1159     | 1193     |
| Field Street                    | NB        | 1271       | 1332     | 1414     | 1382     |
|                                 | SB        | 1308       | 1314     | 1145     | 1267     |
| Banbury Road (North of Field    | NB        | 726        | 730      | 850      | 780      |
| Street)                         | SB        | 419        | 544      | 462      | 499      |
| Buckingham Road (North of Field | NB        | 861        | 895      | 876      | 865      |
| Street)                         | SB        | 1204       | 1063     | 995      | 1031     |
| Route 1b North West Link (South | NEB       | NA         | 242      | NA       | NA       |
| of Bucknell Rd)                 | SWB       | NA         | 200      | NA       | NA       |
| Route 2c (South of Graven Hill) | EB        | NA         | NA       | 1063     | NA       |
|                                 | WB        | NA         | NA       | 823      | NA       |
| Route 3 (South of Graven Hill)  | EB        | NA         | NA       | NA       | 901      |
|                                 | WB        | NA         | NA       | NA       | 1037     |

#### Table 13: PM Peak Modelled Scenario Link Flows: With Upper Heyford Demand (PCUs)

7.5 Again, reductions are seen on links within the Bicester urban area for all scenarios which include a peripheral route due to rerouting of traffic onto the new links.

7.6 Routes 2c and 3 give significant reductions on the A41 (East of Oxford Road). Routes 2c and 3 give the largest increases on Kings End northbound although the southbound flows on this link remains largely static in all options.



- 7.7 Field Street remains largely unchanged in all options. This is likely due to the vehicles using this link having a trip end near to the link limiting the routing alternatives.
- 7.8 These results are consistent with Scenarios 1-4.
- 7.9 The number of links and turns at junctions with Volume over Capacity (V/C) ratios of 85% or over and 100% or over are given in **Tables 14 and 15** for each scenario. A green shaded cell indicates the best performing option:

# Table 14: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over (AMPeak with Upper Heyford)

| Ontion                         | 8    | 5%    | 100% |       |  |
|--------------------------------|------|-------|------|-------|--|
| Option                         | Link | Turns | Link | Turns |  |
| 2012                           | 15   | 20    | 7    | 13    |  |
| Scenario 5<br>No New Link Road | 94   | 189   | 51   | 130   |  |
| Scenario 6 R1b                 | 89   | 169   | 43   | 107   |  |
| Scenario 7 R2c                 | 93   | 172   | 43   | 111   |  |
| Scenario 8 R3                  | 88   | 165   | 42   | 101   |  |

Table 15: No of Modelled Links and Turns with V/C 85% or Over & 100% or Over (PM Peak with Upper Heyford)

| Ontion                         | 8    | 5%    | 100% |       |  |
|--------------------------------|------|-------|------|-------|--|
| Option                         | Link | Turns | Link | Turns |  |
| 2012                           | 19   | 22    | 9    | 15    |  |
| Scenario 5<br>No New Link Road | 94   | 182   | 55   | 133   |  |
| Scenario 6 R1b                 | 88   | 157   | 45   | 102   |  |
| Scenario 7 R2c                 | 82   | 163   | 45   | 110   |  |
| Scenario 8 R3                  | 87   | 161   | 45   | 109   |  |

- 7.10 As can be seen from **Tables 14 and 15**, Route 3 again performs the best in the AM peak across all scenarios having the least amount of links and junctions over 85% and over and 100% and over V/C for all scenarios. For the PM peak Routes 1b and 2c perform better.
- 7.11 Route 1b performs comparatively better in the with Upper Heyford scenarios. This is likely due to the proximity of the R1b scheme to both the Upper Heyford and NW Bicester developments.



7.12 Overall it is considered that these results are consistent with Scenarios 1-4 (No Upper Heyford).

www.wyg.com





### 8 Conclusions

- 8.1 The inclusion of the predicted growth for the Bicester area results in significant increases in over capacity queuing, average speed and total travel time from the 2012 base.
- 8.2 Of the peripheral routes, Route 3 generally performs best in all areas for both peak periods for overall network statistics. Route 3 performs best for the AM peak period for volume over capacity ratios. Routes 1b and 2c perform best for the PM peak period for volume over capacity ratios although the differences are marginal.
- 8.3 TUBA indicates that the routes increase in benefit compared to no peripheral route in the following order:

| • | Route 1b | Least benefit |
|---|----------|---------------|
|   |          |               |

- Route 2c
- Route 3 Most benefit
- 8.4 The inclusion of the proposed Upper Heyford development as a sensitivity test does not materially change the results of the peripheral route assessments.
- 8.5 Although the peripheral route options help to mitigate some of the congestion caused by the increase in growth, they do not solve all of the problems.
- 8.6 Further assessment of mitigation measures that could be feasible for the southern, eastern and northern corridors would be considered advisable to support the peripheral route option assessments.